metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzylchloridobis(quinolin-8-olato)tin(IV)

Qibao Wang

Department of Pharmacy, Jining Medical College, No. 669 Xueyuan Road, Rizhao, Shandong 276826, People's Republic of China Correspondence e-mail: gibaowang@mail.jnmc.edu.cn

Received 12 June 2009; accepted 3 July 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.076; data-to-parameter ratio = 19.3.

In the title compound, $[Sn(C_7H_7)(C_9H_6NO)_2Cl]$, the Sn^{IV} ion is in a distorted octahedral coordination environment formed by the O and N atoms of two bis-chelating quinolin-8-olate ligands, a Cl atom and a C atom from a benzyl ligand. The axial sites are occupied by an N atom of a quinolinate ligand and the C atom of the benzyl ligand. The axial Sn—N bond is slightly shorter than the equatorial Sn—N bond.

Related literature

For the chemical, biological and pharmaceutical properties of organotin(IV) complexes, see: Nath *et al.* (2001); Pellerito & Nagy (2002). For diorganotin complexes, see: Szorcsik *et al.* (2005). For a related structure, see: Kellö *et al.* (1995).

a = 11.6283 (14) Å

b = 10.6290 (14) Å

c = 17.948 (2) Å

Experimental

Crystal data	
$[Sn(C_7H_7)(C_9H_6NO)_2Cl]$ $M_7 = 533.56$	
Monoclinic, $P2_1/n$	

 $\beta = 94.296 \ (2)^{\circ}$ $V = 2212.1 \ (5) \ \text{\AA}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.781, T_{max} = 0.860$

Refinement

Table 1

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.076$ S = 1.025410 reflections 281 parameters $\mu = 1.30 \text{ mm}^{-1}$ T = 273 K $0.20 \times 0.15 \times 0.12 \text{ mm}$

14242 measured reflections 5410 independent reflections 3930 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$

Sn1-O1	2.067 (2)	Sn1-N2	2.239 (2)
Sn1-O2	2.074 (2)	Sn1-N1	2.252 (2)
Sn1-C19	2.148 (3)	Sn1-Cl1	2.4310 (9)
O1-Sn1-O2	154.94 (8)	C19-Sn1-N1	98.59 (11)
O1-Sn1-C19	103.86 (12)	N2-Sn1-N1	85.23 (8)
O2-Sn1-C19	95.81 (12)	O1-Sn1-Cl1	91.98 (6)
O1-Sn1-N2	85.26 (8)	O2-Sn1-Cl1	102.40 (6)
O2-Sn1-N2	75.96 (8)	C19-Sn1-Cl1	93.21 (9)
C19-Sn1-N2	170.69 (12)	N2-Sn1-Cl1	84.48 (6)
O1-Sn1-N1	76.53 (8)	N1-Sn1-Cl1	165.16 (6)
O2-Sn1-N1	85.38 (8)		

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the S&R Project–Starting Off Funds of JMC.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2848).

References

Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kellö, E., Vrábel, V., Holeček, J. & Sivý, J. (1995). J. Organomet. Chem. 493, 13–16.

Nath, Y., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99-149.

Pellerito, L. L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111-150.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Szorcsik, A., Nagy, L., Scopelliti, M., Deàk, A., Pellerito, L. & Hegetschweiler, K. (2005). J. Organomet. Chem. 690, 2243–2253.

Acta Cryst. (2009). E65, m905 [doi:10.1107/S1600536809025902]

Benzylchloridobis(quinolin-8-olato)tin(IV)

Q. Wang

Comment

The chemical, biological and pharmaceutical properties of organotin(IV) complexes have been extensively studied owing to their anti-tumor activity(Pellerito & Nagy, 2002; Nath *et al.*, 2001). Organotin(IV) complexes with ligands containing phenolic –OH or phenolic –OH and –COOH groups and an aromatic N donor atom comprise an interesting class of such complexes. The studies are manily focused on diorganotin complexes (Szorcsik *et al.*, 2005) and up until now few publications have been reported on mono-organotin complexes of this type, In this paper, we reported the structure of the title mono-organotin complex. The title compound was synthesized by the reaction of sodium quinolin-8-olate with dibenzyltin dichlorides in dichloromethane. In the title compound, the coordination geometry around the Sn^{IV} ion is distorted octahedral; two O atoms, a N atom of the *cis*-chelated 8-quinolinate ligands, and a chlorine atom are in equatorial sites. The axial sites are occupied by the N atom of the other *cis*-chelate 8-quinolinate group and the C atom of the benzyl group. The two Sn—O distances are the same within experimental error but the axial Sn—N bond is slightly shorter than the equatorial Sn—N bond. The Sn—Cl and Sn—C distances are similar to those in butylchlorobis(8-quinolinate)tin(IV) (Kellö *et al.*, 1995).

Experimental

The mixture of sodium quinolin-8-olate (0.334 g, 2.0 mmol) and dibenzyltin dichlorides (0.372 g, 1.0 mmol) was suspended in 30 ml dichloromethane at room temperature for 24 h, then the sovents were removed on a rotary evaporator, the residue was recrystallized in dichloromethane-hexane (3:1) to give yellow crystals 0.437 g. Yield 82%.

Refinement

H atoms were positioned geometrically and refined using a riding-model approximation with C—H = 0.93–0.97 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$. The anisotropic displacement parameters of the C atoms in the benzyl group are larger than normal but were not considered severe enough to model as disorder.

Figures

Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 30% probability for non-H atoms.

Benzylchloridobis(quinolin-8-olato)tin(IV)

Crystal data

$[\mathrm{Sn}(\mathrm{C_7H_7})(\mathrm{C_9H_6NO})_2\mathrm{Cl}]$
$M_r = 533.56$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 11.6283 (14) Å
<i>b</i> = 10.6290 (14) Å
<i>c</i> = 17.948 (2) Å
$\beta = 94.296 \ (2)^{\circ}$
$V = 2212.1 (5) \text{ Å}^3$
Z = 4

Data collection

5410 independent reflections
3930 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.038$
$\theta_{max} = 28.4^{\circ}$
$\theta_{\min} = 2.0^{\circ}$
$h = -14 \rightarrow 15$
$k = -14 \rightarrow 9$
$l = -24 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.076$	$w = 1/[\sigma^2(F_o^2) + (0.0307P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.002$
5410 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
281 parameters	$\Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$
48 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.00054 (14)

Pri methods $F_{000} = 1064$ $D_{\rm x} = 1.602 \ {\rm Mg \ m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3464 reflections $\theta = 2.2 - 24.1^{\circ}$ $\mu = 1.30 \text{ mm}^{-1}$ T = 273 KBlock, yellow $0.20\times0.15\times0.12~mm$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.695432 (15)	0.868135 (18)	0.124643 (11)	0.03912 (8)
Cl1	0.65912 (7)	1.09309 (8)	0.12976 (5)	0.0555 (2)
N1	0.69034 (19)	0.6613 (2)	0.09745 (13)	0.0384 (5)
N2	0.50410 (19)	0.8508 (2)	0.12869 (13)	0.0376 (5)
01	0.66194 (18)	0.86474 (18)	0.00990 (11)	0.0476 (5)
O2	0.67424 (16)	0.8119 (2)	0.23340 (10)	0.0457 (5)
C1	0.7089 (2)	0.5632 (3)	0.14258 (17)	0.0436 (7)
H1	0.7284	0.5771	0.1931	0.052*
C2	0.7000 (2)	0.4408 (3)	0.11637 (18)	0.0529 (8)
H2	0.7139	0.3734	0.1489	0.064*
C3	0.6711 (3)	0.4201 (3)	0.04313 (19)	0.0544 (8)
Н3	0.6646	0.3378	0.0256	0.065*
C4	0.6504 (2)	0.5201 (3)	-0.00712 (17)	0.0441 (7)
C5	0.6201 (3)	0.5090 (4)	-0.08445 (19)	0.0595 (9)
Н5	0.6123	0.4300	-0.1066	0.071*
C6	0.6023 (3)	0.6147 (4)	-0.12630 (19)	0.0626 (10)
Н6	0.5814	0.6065	-0.1771	0.075*
C7	0.6145 (3)	0.7350 (4)	-0.09581 (17)	0.0537 (8)
H7	0.6003	0.8048	-0.1264	0.064*
C8	0.6468 (2)	0.7521 (3)	-0.02160 (16)	0.0419 (7)
C9	0.6630 (2)	0.6424 (3)	0.02335 (15)	0.0374 (6)
C10	0.4226 (2)	0.8810 (3)	0.07682 (17)	0.0454 (7)
H10	0.4433	0.9129	0.0315	0.055*
C11	0.3059 (3)	0.8664 (3)	0.0881 (2)	0.0553 (9)
H11	0.2498	0.8914	0.0515	0.066*
C12	0.2751 (3)	0.8152 (3)	0.1531 (2)	0.0587 (9)
H12	0.1975	0.8036	0.1606	0.070*
C13	0.3607 (2)	0.7794 (3)	0.20950 (18)	0.0479 (7)
C14	0.3386 (3)	0.7245 (4)	0.2775 (2)	0.0685 (10)
H14	0.2634	0.7056	0.2879	0.082*
C15	0.4281 (4)	0.6989 (4)	0.3284 (2)	0.0752 (11)
H15	0.4126	0.6614	0.3734	0.090*
C16	0.5433 (3)	0.7270 (3)	0.31570 (18)	0.0595 (9)

H16	0.6021	0.7095	0.3522	0.071*
C17	0.5684 (2)	0.7800 (3)	0.24933 (16)	0.0428 (7)
C18	0.4754 (2)	0.8027 (3)	0.19468 (16)	0.0388 (6)
C19	0.8792 (2)	0.8914 (3)	0.1398 (2)	0.0616 (10)
H19A	0.9022	0.9534	0.1042	0.074*
H19B	0.8983	0.9249	0.1894	0.074*
C20	0.9480 (2)	0.7754 (3)	0.13088 (17)	0.0453 (7)
C21	0.9725 (3)	0.6970 (4)	0.1901 (2)	0.0668 (10)
H21	0.9468	0.7171	0.2364	0.080*
C22	1.0347 (4)	0.5888 (5)	0.1821 (4)	0.115 (2)
H22	1.0519	0.5367	0.2231	0.138*
C23	1.0711 (5)	0.5578 (6)	0.1143 (5)	0.141 (3)
H23	1.1122	0.4838	0.1086	0.170*
C24	1.0482 (4)	0.6336 (6)	0.0557 (4)	0.118 (2)
H24	1.0742	0.6126	0.0096	0.142*
C25	0.9858 (3)	0.7432 (4)	0.0632 (2)	0.0732 (11)
H25	0.9697	0.7951	0.0221	0.088*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.03405 (11)	0.03303 (12)	0.04976 (14)	-0.00005 (9)	-0.00043 (8)	-0.00080 (9)
C11	0.0532 (4)	0.0332 (4)	0.0790 (6)	0.0005 (3)	-0.0019 (4)	-0.0058 (4)
N1	0.0368 (12)	0.0351 (14)	0.0427 (13)	0.0014 (10)	-0.0021 (10)	-0.0002 (11)
N2	0.0352 (12)	0.0321 (13)	0.0449 (13)	-0.0018 (10)	-0.0021 (10)	-0.0019 (11)
01	0.0589 (13)	0.0367 (12)	0.0478 (12)	0.0030 (10)	0.0069 (10)	0.0074 (10)
O2	0.0413 (11)	0.0489 (13)	0.0454 (11)	0.0001 (10)	-0.0066 (9)	0.0001 (10)
C1	0.0415 (16)	0.0403 (18)	0.0482 (17)	0.0036 (14)	-0.0016 (13)	0.0021 (14)
C2	0.0550 (19)	0.0406 (18)	0.062 (2)	0.0063 (15)	-0.0037 (16)	0.0055 (16)
C3	0.0527 (18)	0.0365 (18)	0.073 (2)	0.0043 (15)	0.0001 (17)	-0.0106 (17)
C4	0.0350 (14)	0.0447 (18)	0.0523 (18)	0.0044 (13)	0.0012 (13)	-0.0083 (15)
C5	0.059 (2)	0.057 (2)	0.062 (2)	0.0075 (17)	-0.0002 (17)	-0.0210 (18)
C6	0.062 (2)	0.084 (3)	0.0419 (17)	0.013 (2)	0.0022 (15)	-0.0081 (19)
C7	0.056 (2)	0.061 (2)	0.0444 (18)	0.0119 (17)	0.0076 (15)	0.0053 (17)
C8	0.0364 (15)	0.0445 (19)	0.0461 (17)	0.0055 (13)	0.0109 (13)	-0.0015 (14)
C9	0.0315 (13)	0.0369 (16)	0.0440 (16)	0.0036 (12)	0.0042 (12)	-0.0011 (13)
C10	0.0404 (15)	0.0417 (18)	0.0526 (18)	-0.0022 (13)	-0.0063 (13)	0.0058 (14)
C11	0.0379 (16)	0.056 (2)	0.070 (2)	-0.0025 (15)	-0.0126 (15)	0.0040 (18)
C12	0.0385 (17)	0.058 (2)	0.080 (2)	-0.0019 (16)	0.0044 (17)	-0.0098 (19)
C13	0.0395 (16)	0.0464 (19)	0.0586 (19)	-0.0030 (14)	0.0090 (14)	-0.0059 (16)
C14	0.060 (2)	0.081 (3)	0.066 (2)	-0.011 (2)	0.0183 (19)	0.001 (2)
C15	0.088 (3)	0.085 (3)	0.056 (2)	-0.009 (2)	0.024 (2)	0.013 (2)
C16	0.066 (2)	0.065 (2)	0.0467 (19)	0.0048 (18)	-0.0019 (17)	0.0064 (18)
C17	0.0430 (17)	0.0391 (17)	0.0462 (17)	0.0024 (13)	0.0022 (13)	-0.0048 (14)
C18	0.0417 (15)	0.0298 (16)	0.0450 (17)	0.0017 (12)	0.0042 (13)	-0.0062 (13)
C19	0.0335 (16)	0.050 (2)	0.101 (3)	-0.0059 (15)	-0.0019 (17)	-0.0011 (19)
C20	0.0289 (14)	0.0435 (18)	0.063 (2)	-0.0024 (13)	-0.0001 (14)	-0.0020 (16)
C21	0.0453 (19)	0.068 (3)	0.086 (3)	-0.0144 (17)	-0.0035 (18)	0.019 (2)

C22	0.060 (3)	0.063 (3)	0.215 (6)	-0.011 (2)	-0.030 (3)	0.053 (4)
C23	0.060 (3)	0.058 (3)	0.304 (9)	0.005 (3)	-0.001 (5)	-0.045 (4)
C24	0.061 (3)	0.130 (5)	0.167 (5)	-0.014 (3)	0.034 (3)	-0.089 (4)
C25	0.050 (2)	0.101 (3)	0.069 (2)	-0.007 (2)	0.0030 (18)	-0.015 (2)
Geometric p	arameters (Å, °)					
Sn1—O1		2.067 (2)	C10	—H10	0.93	300
Sn1—O2		2.074 (2)	C11-	C12	1.359 (5)	
Sn1—C19		2.148 (3)	C11-	—H11	0.9300	
Sn1—N2		2.239 (2)	C12-	—C13	1.418 (4)	
Sn1—N1		2.252 (2)	C12-	—H12	0.9300	
Sn1—Cl1		2.4310 (9)	C13-	C14	1.393 (4)	
N1—C1		1.328 (4)	C13-		1.40	01 (4)
N1—C9		1.359 (3)	C14	—C15	1.36	50 (5)
N2-C10		1.318 (3)	C14	—H14	0.93	300
N2-C18		1.355 (3)	C15-	—C16	1.40)8 (5)
O1—C8		1.330 (3)	C15-	—H15	0.93	300
O2—C17		1.328 (3)	C16	—C17	1.36	59 (4)
C1—C2		1.385 (4)	C16	—H16	0.93	300
C1—H1		0.9300	C17-		1.42	25 (4)
C2—C3		1.350 (4)	C19-	—C20	1.48	35 (4)
С2—Н2		0.9300	C19-	—H19A	0.97	700
C3—C4		1.403 (4)	C19-	—H19B	0.97	700
С3—Н3		0.9300	C20	—C21	1.36	54 (4)
C4—C5		1.411 (4)	C20	—C25	1.36	56 (4)
С4—С9		1.414 (4)	C21-	—C22	1.37	71 (6)
C5—C6		1.359 (5)	C21-	—H21	0.93	300
С5—Н5		0.9300	C22-	—C23	1.35	59 (8)
C6—C7		1.394 (5)	C22-	—H22	0.93	300
С6—Н6		0.9300	C23-	—C24	1.33	35 (9)
С7—С8		1.369 (4)	C23-	—Н23	0.93	300
С7—Н7		0.9300	C24	—C25	1.38	34 (7)
С8—С9		1.422 (4)	C24	—H24	0.93	300
C10-C11		1.395 (4)	C25-	—H25	0.93	300
01—Sn1—O	2	154.94 (8)	N2-	C10H10	119	.1
O1—Sn1—C	19	103.86 (12)	C11-	—С10—Н10	119	.1
O2—Sn1—C	19	95.81 (12)	C12-		119	.4 (3)
O1—Sn1—N	2	85.26 (8)	C12-		120	.3
O2—Sn1—N	2	75.96 (8)	C10-		120	.3
C19—Sn1—1	N2	170.69 (12)	C11-		120	.3 (3)
O1—Sn1—N	1	76.53 (8)	C11-	—С12—Н12	119	.9
O2—Sn1—N	1	85.38 (8)	C13-	—С12—Н12	119	.9
C19—Sn1—1	N1	98.59 (11) C14—C13—C18 118.7		.7 (3)		
N2—Sn1—N	1	85.23 (8) C14—C13—C12 124		124	.9 (3)	
O1—Sn1—C	11	91.98 (6)	C18-		116	.4 (3)
O2—Sn1—C	11	102.40 (6)	C15-		119	.4 (3)
C19—Sn1—C	C11	93.21 (9)	C15-		120	.3
N2—Sn1—C	11	84.48 (6)	C13-		120	.3

N1—Sn1—Cl1	165.16 (6)	C14—C15—C16	122.6 (3)
C1—N1—C9	119.8 (3)	C14—C15—H15	118.7
C1—N1—Sn1	129.3 (2)	C16—C15—H15	118.7
C9—N1—Sn1	110.89 (18)	C17—C16—C15	119.7 (3)
C10—N2—C18	119.9 (2)	C17—C16—H16	120.1
C10—N2—Sn1	128.4 (2)	C15—C16—H16	120.1
C18—N2—Sn1	111.70 (17)	O2-C17-C16	123.6 (3)
C8—O1—Sn1	116.63 (18)	O2-C17-C18	118.4 (3)
C17—O2—Sn1	116.97 (17)	C16—C17—C18	117.9 (3)
N1—C1—C2	121.7 (3)	N2-C18-C13	122.2 (3)
N1—C1—H1	119.1	N2-C18-C17	116.2 (2)
С2—С1—Н1	119.1	C13—C18—C17	121.6 (3)
C3—C2—C1	119.4 (3)	C20—C19—Sn1	115.5 (2)
С3—С2—Н2	120.3	С20—С19—Н19А	108.4
С1—С2—Н2	120.3	Sn1—C19—H19A	108.4
C2—C3—C4	121.4 (3)	C20—C19—H19B	108.4
С2—С3—Н3	119.3	Sn1—C19—H19B	108.4
С4—С3—Н3	119.3	H19A—C19—H19B	107.5
C3—C4—C5	125.9 (3)	C21—C20—C25	118.5 (4)
C3—C4—C9	116.1 (3)	C21—C20—C19	120.4 (3)
C5—C4—C9	117.9 (3)	C25—C20—C19	121.1 (3)
C6—C5—C4	119.4 (3)	C20—C21—C22	120.8 (4)
С6—С5—Н5	120.3	C20—C21—H21	119.6
С4—С5—Н5	120.3	C22—C21—H21	119.6
C5—C6—C7	122.3 (3)	C23—C22—C21	119.9 (6)
С5—С6—Н6	118.8	C23—C22—H22	120.0
С7—С6—Н6	118.8	C21—C22—H22	120.0
C8—C7—C6	121.1 (3)	C24—C23—C22	120.1 (6)
С8—С7—Н7	119.5	C24—C23—H23	120.0
С6—С7—Н7	119.5	С22—С23—Н23	120.0
O1—C8—C7	123.5 (3)	C23—C24—C25	120.4 (6)
O1—C8—C9	119.3 (3)	C23—C24—H24	119.8
С7—С8—С9	117.3 (3)	C25—C24—H24	119.8
N1—C9—C4	121.6 (3)	C20—C25—C24	120.2 (5)
N1—C9—C8	116.4 (3)	C20—C25—H25	119.9
C4—C9—C8	121.9 (3)	C24—C25—H25	119.9
N2-C10-C11	121.7 (3)		

